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ABSTRACT
Mobile Crowd Sensing (MCS) is a method for collecting multiple
sensor data from distributed mobile devices for understanding so-
cial and behavioral phenomena. The method requires collecting
the sensor data 24/7, ideally inconspicuously to minimize bias. Al-
though several MCS tools for collecting the sensor data from an
off-the-shelf smartphone are proposed and evaluated under con-
trolled conditions as a benchmark, the performance in a practical
sensing study condition is scarce, especially on iOS. In this paper,
we assess the data collection quality of AWARE iOS, installed on
off-the-shelf iOS smartphones with 9 participants for a week. Our
analysis shows that more than 97% of sensor data, provided by
hardware sensors (i.e., accelerometer, location, and pedometer sen-
sor), is successfully collected in real-world conditions, unless a user
explicitly quits our data collection application.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting design and evaluation methods; Ubiquitous and mobile com-
puting systems and tools; Ubiquitous and mobile devices.
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1 INTRODUCTION
Mobile Crowd Sensing (MCS) is a method for collecting data from
distributed mobile devices, and understanding social and behavioral
phenomena through sensor data analysis. Nowadays, the smart-
phone is widely used all over the world [3] and it is used as a mobile
sensing platform in various human subject research [2, 4, 8, 9, 13, 15]
including health care, public health, and cultural anthropology. For
supporting researchers, several mobile sensing platforms [5, 7, 18]
were developed and used successfully. For example, the AWARE
Framework [5, 10] is an open-source cross-platform (Android and
iOS) mobile sensing platform. The framework allows us to collect
data from hardware- (e.g., accelerometer, gyroscope, and ambient-
noise), software- (e.g., battery level, screen usage, and network
condition), human- (Experience Sampling Method: ESM) sensors
with a simple application installation and joining a designated study
by reading a QR code or URL.

Data collection quality depends greatly on the sensors selected
and user compliance [10]. Additionally, the latest mobile OSs ag-
gressively terminate or suspend an application running in the back-
ground for maximizing battery life. Therefore, data collection is
significantly affected if the application is not running effectively.
Our goal is to assess the data collection in realistic conditions,
specifically on iOS as it has a greater number of limitations than on
Android. We define a “realist condition” as when a researcher dis-
tributes an application to a participant’s smartphone for collecting
data and the data from selected multiple sensors is automatically
transferred from the device during a designated deployment, even
if the user is not actively using the research application.

In this paper, we assess the data collection quality on off-the-
shelf iPhones in realistic conditions for identifying potential data
collection issues. For accessing the quality in the realistic conditions,
we deliver AWARE-iOS to 9 volunteers and collect 6 sensors’ data
from their iPhones for a week. As a strategy to maximize data
collection quality, we use “ESM+SPN (Silent Push Notification)”
as seen in our previous work [10]. Our results demonstrate that
more than 97% of sensor data provided from hardware sensors are
successfully retrieved using ESM+SPN unless the user explicitly
quits the application.

The contributions of our paper are as follow:

https://doi.org/10.1145/3410530.3414369
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• We conducted a week-long in-the-wild deployment with 9
participants;

• We demonstrate that the data collection quality is higher
with “ESM+SPN”, resulting in more than 97% data retrieval
success, when compared to previous controlled conditions;

• We determine the impact on battery life in-the-wild for our
data collection setup.

2 RELATEDWORK
MCS is a method widely used in various human subject sensing
researches. With the availability of smartphones, the opportunities
for using MCS are growing rapidly. This section describes existing
MCS-based research and the sensor data collected. In addition, we
arrange the existing tools and their data collection performance in
controlled and realistic conditions.

EmotionSense [13] detects individual emotions and verbal inter-
actions between social group members from the sensors (e.g., micro-
phone, GPS, and accelerometer) on off-the-shelf smartphones. Sim-
ilarly, StudentLife [15, 16] tackled the measuring of hidden stress
and strain in students’ lives based on data such as sleep, activity,
mood, sociability, and mental well–being gathered by smartphones.
MCS-based research usually collects sensor data from hardware
sensors (GPS, Accelerometer, and Ambient noise), and software sen-
sors (Screen events, Battery level, and Network), and human-input
sensor data from off-the-shelf smartphones for analyzing data. The
human input data usually is collected through ESM or Ecological
Momentary Assessment (EMA) mobile-based surveys.

For accelerating MCS-based research, various mobile sensing
frameworks for Android [1, 5, 11, 13, 14, 17] and iOS [6, 7, 15, 18]
have been created. With a decade-long existence, AWARE Frame-
work [5] is an open-source mobile sensing framework and support
for collecting these three types of sensors by just installing a client
application onto a smartphone or importing the library into a sens-
ing application, and has been utilized in several research efforts
successfully (https://awareframework.com/science/).

Though stable sensing in-the-wild is an important factor in a
mobile sensing framework, most of these frameworks have been
not been assessed for sensor data collection quality in realistic
conditions, or are assessed under controlled environments. In com-
parison to Android, iOS has strict rules when an application is
running in the background [10]. Unfortunately, this means a higher
risk of data loss. SensingKit [7] and AWARE [5, 10] have conducted
battery life assessments per sensor condition, however, the assess-
ments do not take into account multimodal sensing conditions nor
external factors driven by in-the-wild deployments (e.g., users turn
off sensors at will, more physical activity performed by the user,
and so on.). In addition, Xiong et al. [18] conducted a case study
using Sensus, however, the evaluation does not assess data collec-
tion quality during the study. While providing data loss risks and
prevention methods can help to plan and manage an MCS study,
these risks are not clear and a guideline for sustainable MCS study
in-the-wild condition is nonexistent.

Figure 1: Screenshots of AWARE Client iOS V2

3 SUFFICIENT SENSOR DATA COLLECTION
ON SMARTPHONES

Mobile sensing research for monitoring human activities needs to
collect sensor data, include hardware, software, and human-data,
on smartphone 24/7 as possible. The existing mobile sensing frame-
works have measured performance such as battery consumption,
data collection, and data upload as a benchmark [5, 7, 10]. For exam-
ple, our prior research [10] shows that battery life of AWARE-iOS
varies between 15–34 hours due to the selected number of sensors
and sensing frequency. Four case studies were conducted (BASE-
LINE, ESM, SPN, and ESM+SPN) that indicates ESM+SPN allows us
to collect nearly 100% data even if the smartphone uses Low-Power
Mode and received memory warning more than 10 times per day.

However, the existing basic performance measurement and case
studies do not evaluate sensing quality, battery life, and poten-
tial risks under in-the-wild conditions. Although the quality of
data collection by using off-the-shelf smartphones fluctuates due
to the sensing configuration and device condition [10], sensing
performance in an in-the-wild condition has not been established.
Ensuring the sensing performance in an in-the-wild condition be-
fore starting a sensing study helps to design a study and reduce the
stress of study management.

In this paper, we assess a data collection performance by using
off-the-shelf iOS smartphones in a realistic condition. As a tool of
mobile sensing, we use AWARE Framework for iOS (AWARE-iOS).
AWARE Framework 1 is a cross-platform mobile sensing platform.
That is composed of the library, client, and server. AWARE-iOS [10]
is a mobile sensing library for iOS in AWARE Framework. The li-
brary allows us to collect multiple-sensor data. The collected sensor
is saved into local storage and uploaded to AWARE-Server when
the device has a WiFi connection and the battery is being charged.
Figure 1 is a screenshot of client application (AWARE Client iOS V2)
which is based on AWARE-iOS. This application can be download
via AppStore or GitHub. Mainly the application has three main
screens: ESM, CONTEXT, and SETTING. A user can import data
collection settings via the QR code reader on SETTING, and see the
data on CONTEXT. In addition, AWARE-iOS supports ESM. This
client application provides a scheduled survey via the ESM page
when the trigger occurs.
1https://www.awareframework.com

https://awareframework.com/science/
https://www.awareframework.com
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Table 1: Participants’ Devices

# Device OS RAM Storage Size (Free)

D1 iPhone XR 13.3 3GB 128 (2) GB
D2 iPhone XS 13.3.1 4GB 64 (8) GB
D3 iPhone XS 13.3 4GB 64 (1) GB
D4 iPhone XS 13.3 4GB 256 (141) GB
D5 iPhone XS 13.3 4GB 256 (54) GB
D6 iPhone 11 13.3 4GB 128 (63) GB
D7 iPhone 11 13.3.1 4GB 128 (82) GB
D8 iPhone 11 13.3.1 4GB 256 (22) GB
D9 iPhone 11 Pro 13.3.1 4GB 64 (5) GB

4 EXPERIMENTAL SETUP
As an experiment in realistic conditions, we collect human daily
activities and emotions by using a data collection application on
a smartphone. The application collects sensor data (hardware-,
software, and human-sensor) and events on the smartphone auto-
matically in the background. Based on the collected data, we assess
the performance of data collection and battery consumption in the
realistic condition.

4.1 Sensors and Participants
In this experiment, we use the same set of sensors and configuration
as in Nishiyama et al. [10]. The configuration contains the following
hardware-, software-, and human-sensors:

• Pedometer (every 10 minute)
• Locations (every 3 minute, 100 meter accuracy)
• Accelerometer (5 Hz)
• Weather (every 10 minute)
• Battery consumption (every event)
• Screen (every event)
• ESM (three times in a day)

For ESM, the application delivers a questionnaire at 9 AM, 3 PM, and
9 PM. The ESM contains a Photographic Affect Meter (PAM) [12].
A participant needs to select an image that represents his/her own
feeling when the ESM is delivered. The collected data is saved into
the local-storage in the application and uploaded when the device
connects to WiFi and is charging the battery. In addition, our server
sends a silent push notification every 30 minutes to the application
continuously. This makes sure the application is able to remain
active in the background.

Table 1 shows a list of OS and devices for each participant. We
recruited 10 volunteers who are students at Keio University and
have an iOS smartphone. A participant’s smartphone was damaged
during this study, resulting in our final 9 participants.

4.2 Experiment Procedure
The participants installed AWARE Client iOS V2 as a sensing ap-
plication from AppStore onto their personal smartphone before
joining the study. Each participant read instructions of the experi-
ment and set up the application independently. The participant can
enable the sensor configuration just by reading a QR code from the

Table 2: Estimated Amount of Sensor Data

Sensor Name Hour Day Week

SPN 2 48 336
ESM — 3 21

Location 20 480 3,360
Pedometer 6 144 1,008

Accelerometer 18,000 432,000 3,024,000
Weather 6 144 1,008

SETTINGS page. In addition, we requested that each participant
conduct the following tasks:

• Answer surveys provided three times (9AM, 3PM, and 9PM)
in a day

• Do not use Low-Power Mode as possible
• Set location access to “Always”
• Allow Push Notifications

At the end of the experiment, we conducted a survey on per-
ceived battery consumption, application usage, and frequency of
notifications during the study. No reward was used in this experi-
ment.

4.3 Estimated Amount of Sensor Data
Table 2 shows the estimated amount of sensor data (number of
records) during this one week study. In this evaluation, we compare
this ideal amount of collected sensor data (Table 2) to what was
actually collected in an hour, day, and week.

Battery and Screen sensors do not record sensor data periodically,
as they are event-triggered. Thus we can not estimate the amount
of event during a time window. These sensor data are not used as a
data source for measuring the data collection rate.

5 RESULT
This section organises the results by application usage, data collec-
tion rate, and battery consumption analysis.

5.1 Application and Device Usage
Figure 2 illustrates application and device usage during the study
for each device. Figure 2(a) and Figure 2(b) are events for potentially
improving data collection.

The participants answered surveys more than 2 times in a day
except 𝐷1. In addition, the 𝑆𝑃𝑁 s are received more than 10 times
in a day except for 𝐷1. On the other hand, potential events for
reducing data collection are shown in Figure 2(c) and Figure 2(d).
𝐷5 received memory warnings 12.3 times a day on average as
shown in Figure 2(c). As shown in Figure 2(d),𝐷1 quit or shut down
the application 20 times in the week.

5.2 Data Collection Rate
Figure 3 illustrates the data collection rate of each sensor. Each
sensor indicates a similar data collection pattern except for 𝐷1.
Pedometer sensor 3(a) collected 99.75% (SD: 0.7) of data except for
𝐷8. Same as pedometer, 97.89% (SD: 3.08) of location and 97.68%
(SD: 3.19) of accelerometer sensor data are collected as shown in
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Figure 2: Number of Device and Application Events Per Day

Figure 3(b) and 3(c). Weather sensor collected 80.49% (SD: 10.65) of
data.

Figure 4 shows the number of data sampling events by hour
during the study. The data collection rate of𝐷1 is less than 40%. This
rate is less than other devices, which have about a 95% collection
rate. As shown in Figure 2(d), 𝐷1 quit the application at the early
phase, and then the operating system appears to have blocked the
application running as a background process.

The battery sensor records battery information when the battery
level is changed, therefore the collected data is not periodic. As
shown in Figure 4(d), the battery level is frequently changed in
the daytime. When a periodic sensor (i.e., location sensor) is not
collecting sensor data (𝐷3 00:00–12:00 in Day1) an event-based
sensor could not collect its data.

5.3 Battery Consumption
Figure 5 illustrates battery consumption in an hour. This battery
consumption (𝐵𝐶) is calculated by Formula 1. 𝑏𝑠𝑡𝑎𝑟𝑡 and 𝑏𝑒𝑛𝑑 are
battery level at start and end of battery dis-charging event. 𝑡𝑠𝑡𝑎𝑟𝑡
and 𝑡𝑒𝑛𝑑 are timestamp (second) of start and end of the dis-charging
event. 𝐻 (=360 seconds) a constant of seconds of hour.

𝐵𝐶 =

(
𝑏𝑠𝑡𝑎𝑟𝑡 − 𝑏𝑒𝑛𝑑

|𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑒𝑛𝑑 |

)
𝐻 (1)

The median of battery consumption per hour is 8.24% (N:166,
Mean:10.1, SD:6.65). Based on the median, the battery life is 12.14
hours in this sensor setting.

However, battery consumption depends greatly on the users. For
instance, the minimum battery consumption case of the median
is 2.76% per hour (𝐷2), but the maximum case is 17.95% per hour
(𝐷4).

Table 3 shows the result of the questionnaire. Each participant
were given three 7-Point Likert-Scale questions. 8 participants (total

count of 1, 2, and 3 in Q1) answered that battery is consumed as
under normal use. However, 6 participants (total count of 5, 6, and 7
in Q2) feel that the battery consumption does not detract from their
activities. In addition from Q3, 5 participants felt that receiving
questions three times in a day is too frequent (the total count of 1,
2, and 3 in Q3) for them.

6 DISCUSSION
6.1 Potential Risks of Data Collection
The experimental results show that ESM+SPN allows us to collect
more than 97% of data from hardware sensors, unless a user explic-
itly terminates the application (Figure 3), also visible in Figure 2(d).

For instance, the data collection rate of 𝐷1 is lower than other
devices. In addition, 8 out of 9 participants have terminated the
application voluntarily or involuntarily in their daily life (swiping
it away) more than one time. That is a potential risk for reducing
data collection, therefore the study designer has to closely monitor
app termination events, and set forth mitigation methods.

In addition, the free storage space of 𝐷1, 𝐷2, and 𝐷9 is less than
5GB (see Table 1). An application cannot store any data to the local-
storage if there is no space available. Especially for a long-term
study, a study organizer should check the free-storage size before
starting the study to ensure safe data collection.

The weather sensor lost 20% on average in the case of𝐷2−9. The
weather sensor collects data through RESTful APIs. On iOS, using
the internet connection in the background is restricted, resulting in
theHTTP request being canceled by the OS, beyond the researcher’s
control. A researcher who wants to use a sensor that needs to
use the internet connection in the background needs to consider
the unstable internet connection in the background condition and
potentially postpone the request to a later time or retry again.
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Figure 3: Data Collection Rate
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Figure 4: Amount of Collected Sensor Data Per Hour

6.2 Battery Life and User’s Feelings
In our analysis (see Section 5.3), participants felt the research appli-
cation consumes slightly more battery than usual, but they did not
feel it makes a significant impact on their daily smartphone use.
However, the battery life changes depend on the sensor settings, as
discussed in [10]. Assessing the data collection quality in different
sensor combinations are scheduled for future work.

6.3 Limitation
In this paper, we assessed the performance of ESM+SPN mode over
a week. However, the sensing mode (i.e., Baseline, ESM, SPN, or
ESM+SPN) depends on the study purpose. Each mode has benefits
for collecting sensor data. For instance, SPN mode allows us to
collect sensor data without ESM. Our sample size is relatively small
and the data collection is limited to a week. Effectively, this allowed
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Table 3: Result of Questionnaire

# Question 1 2 3 4 5 6 7 Mode

Q1 How did you perceive the battery life of your smartphone during this study
when compared to normal use?

1 3 4 0 1 1 0 3

1:Very impacted – 7:No impact at all
Q2 How much did you feel the battery life has restricted your daily activity? 1 0 3 0 2 2 2 3

1:Very restricted – 7:Not restricted at all
Q3 How did you feel regarding the frequency of ESMs? 0 1 4 2 2 0 1 3

1:Too much frequent – 7: Not frequent at all
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Figure 5: Battery Consumption in an Hour

us to understand the impact that AWARE iOS has on the battery
life of iOS devices and whether or not the strategies in place would
considerably affect the data collection quality. Our experiment
shows that 97% data acquisition is possible with limited battery
impact.

7 CONCLUSION
MCS is a method for collecting data from multiple sensors from
distributed mobile devices for understanding phenomena, and the
method is required to collect sensor data continually from these
devices even if the user does not interact with the device. Although
severalMCS tools for off-the-shelf smartphones have been proposed
and evaluated only under controlled conditions, performance data
in a realistic condition is scarce. In this paper, we assess the data col-
lection performance of AWARE-iOS in realistic conditions through
an evaluation with 9 participants for a week. The result shows that
97% of data of periodic collecting hardware sensors are collected in
an in-the-wild condition unless the user explicitly quits the appli-
cation, and the average battery life is not perceived as significant
by participants.
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